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A spectral decomposition of the Frobenius–Perron operator is constructed for
one-dimensional maps with intermittent chaos, using the method of coherent
states. A technique using the spectral density function is applied to the the well-
known cusp map, which generates weak type-II intermittency. Higher-order
corrections are obtained to the leading 1/t long-time behavior of the x − x
autocorrelation.
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1. INTRODUCTION

The ubiquity of power-law distributions and 1/f noise in nature is now
well-recognized. (1) Among the mechanisms generating such distributions
are self-organized criticality (2), chaotic transport with Lévy flights (3) and
intermittency. (4) The usual theoretical description of these phenomena is
concerned with the statistics of important observables, such as the x − x
autocorrelation function. (5) Typical analyses concentrate on trajectory
dynamics and calculate statistical quantities such as the average length of
the laminar regions of time series in systems with intermittent chaos.

Our approach to intermittent chaos does not look at trajectories;
rather, we concentrate on the evolution of probability densities governed
by the Frobenius–Perron operator. (6) A spectral decomposition of this
linear operator gives a complete solution of the statistical evolution of the
system. Such complete decompositions have been constructed for a variety
of fully chaotic systems in recent years. (7–9)



In fully chaotic systems with exponential approach to equilibrium
there exist discrete decay modes. (10) Techniques for calculating these modes
are not directly amenable to the marginal chaos of intermittent systems,
where there is power-law approach to equilibrium. As is well known
though, power-law behavior may be obtained from a continuous super-
position of exponential decay modes. (1, 4, 11)

We will show how to construct such modes explicitly for a general
class of maps and then we will apply our method to the cusp map. The
method is similar to previous discussions of the continuous spectrum asso-
ciated with fully chaotic systems. (12) It starts with the construction of shift
states of the Frobenius–Perron operator from which eigenstates,3 someti-

3 Since these states are associated with a continuous spectrum they may be referred to as quasi-
eigenstates or generalized eigenstates. We will not use the qualifier ‘‘generalized’’ for them
because that terminology is used in related work for eigenstates that are generalized functions.

mes called coherent states, are constructed. General densities and observ-
ables may then be expressed as a continuous superposition of these
coherent states.

Other authors have considered the statistical dynamics of intermit-
tency through an analysis of the Frobenius–Perron operator. Hasegawa
and Luschei (13) calculated the power spectrum of the Manneville–Pomeau
map through a spectral analysis associated with a piecewise-linear version
of the map. Kaufmann et al. (14) calculated eigenmodes for a family of maps
whose limiting parameter value yielded the cusp map that is considered
in the present paper. Their matrix representation method was unable to
obtain eigenstates for the cusp map, whereas our coherent state construc-
tion does obtain them.

In the next section our general approach is described. We then turn in
the following section to the application of the method to the cusp map.
Using special properties of intermittent maps we construct smooth eigen-
functions associated with the continuous spectrum of the Frobenius–Perron
operator of the cusp map. This spectral decomposition is then applied to
calculate the x − x autocorrelation function. The well-known power-law
behavior in time of this function (15) is recovered as well as corrections to
the leading-order result.

2. GENERAL METHOD

For a system with discrete-time trajectory dynamics given by
xt+1=f(xt) a probability density r on the phase space M evolves as

r(x, t+1)=Ur(x, t) — F
M

dxŒ d(x − f(xŒ)) r(xŒ, t) (1)
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where the linear operator U is the Frobenius–Perron operator of the
system.(6, 7)

We will construct spectral decompositions of the Frobenius–Perron
operator using the technique of coherent states. (7, 12) The first step is to
obtain a complete set of shift states of U. We denote the shift states by en, s

where n is a nonnegative integer and s is an index whose range will depend
on the system in question. The shift states satisfy

Uen, s=˛0, n=0
en − 1, s, n \ 1

(2)

The full set of states can be constructed by starting with a set of states
in the kernel of U, i.e.,

Ue0, s=0 (3)

which we sometimes refer to as the seed functions of the construction. For
maps that preserve probability these seed functions necessarily carry zero
probability.

We now assume that U has a right inverse U−1
R , which is equivalent to

assuming that the range of f is the entire phase space. (Note however that
U−1

R will be non-unique if f is non-invertible). We use the right inverse U−1
R

to obtain the full set of shift states as

en, s=U−n
R e0, s (4)

These states inherit the zero probability property of the seed functions so
that the full set spans a space orthogonal to the invariant probability density.

Using the shift states the coherent eigenstates are given by

fz, s= C
.

n=0
znen, s (5)

The spectrum of U in this representation is then the set of values of z for
which the series (5) converges.

In order to expand a given density r in terms of the coherent states we
use their dual states.4 We use the following bilinear form between functions

4 Since the Frobenius–Perron operator may also be used in the context of correlation func-
tions to evolve observables, the ‘‘density’’ that we speak of is not necessarily a non-negative
function with unit norm. We will however assume that r ¥ L1.

on the unit interval:

OA | rP — F
1

0
Ag(x) r(x) dx (6)
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The left states Oẽm, r | dual to the shift states en, s satisfy

Oẽm, r | en, sP=dmndrs (7)

where r and s are integers.
The expansion of a density r(x) in terms of the shift states is then

r(x)=req(x)+ C
.

s=1
C
.

n=0
bn, sen, s(x) (8)

where bn, s=Oẽn, s | rP. The expansion of r(x) in terms of the coherent states
is

r(x)=req(x)+ C
.

s=1

1
2pi

G
|z|=1

dz fz, s(x) Of̃z, s | rP (9)

The contour is chosen to enclose all decaying eigenvalues. Those z lying
exactly on the contour can be ignored, since for them fz, s(x) is either not
defined or not L1. The assumption that r(x) ¥ L1, together with the fact
that the fz, s(x) are linearly independent, means that the fz, s(x) with |z|=1
cannot contribute to r(x).

The dual coherent states f̃z, s(x) may be obtained (12) from the dual shift
states as:

f̃z, s(x)= C
.

n=0
(zg)−(n+1) ẽn, r(x) (10)

These states satisfy:

Of̃zŒ, r | fz, sP=
drs

z − z −
(11)

a relation that is necessary so (9) will hold.
The spectral density function

bs(z) — Of̃z, s | rP (12)

appearing in (9) describes the expansion of a given density r(x) over the
coherent states. In can be calculated analytically in some cases (12) but must
be obtained numerically in general. Since the time evolution of a density is
given by

r(x, t)=U tr(x, 0)=req(x)+ C
.

s=1

1
2pi

G
|z|=1

z tbs(z) fz, s(x) dz (13)

the analytic structure of bs(z) determines the time evolution of r(x).
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We now specialize to the case of a one-dimensional map on the unit
interval. Let its branches be indexed by i, and denote as Li the domain of
the i th branch. In this paper only maps for which each branch has full
height (i.e., a range of [0, 1]) are considered. The action of the Frobenius–
Perron operator of the map is given by

Ur(x)=C
i

r[f−1
i (x)]

|f −[f−1
i (x)]|

(14)

where i runs over the total number of branches.
Associated with each branch we define the operator U−1

i , which is a
right inverse for the complete U, as

U−1
i r(x)=˛ r[f(x)]

|f−1−

i [f(x)]|
, x ¥ Li

0, otherwise

(15)

The effect of U−1
i on r(x) is to compress it (in general non-uniformly) into

the subinterval Li and then to rescale it. If U−1
i is applied repeatedly, then

the resulting function will have its support squeezed into a smaller and
smaller interval, but the L1 norm will be preserved.

We can obtain more right inverses, to be called as a general term U−1
c ,

by taking linear combinations of the U−1
i :

U−1
c =C

i
ciU

−1
i (16)

subject to the condition ; i ci=1. Later we will impose a smoothness con-
dition that will require a particular choice of ci coefficients.

3. NONEQUILIBRIUM DYNAMICS OF THE CUSP MAP

Now we apply the coherent state expansion of the Frobenius–Perron
operator to the case of a map with intermittent behavior having power-law
decay of typical observables and time correlation functions. Although we
are concentrating specifically on the cusp map, the techniques used are also
applicable to other one-dimensional maps with intermittency caused by a
marginal fixed point (for example, the Farey map (17) or the Manneville–
Pomeau map (4)).

The cusp map on the unit interval, [0, 1), is defined by the rule

f(x)=1 − `|2x − 1| (17)
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Fig. 1. The cusp map, f(x)=1 − `|2x − 1|.

A graph of this function is shown in Fig. 1. It is of interest in several phy-
sical situations; most notably, it is an approximate return map for the
Lorenz system with certain parameters. The map shows type-II intermit-
tency (5) with a marginally stable fixed point at x=0. A trajectory near this
fixed point moves away from it very slowly.

The Frobenius–Perron operator of the cusp map is given by

Ur(x)=(1 − x)[r(f−1
0 (x))+r(f−1

1 (x))] (18)

where f−1
0 (x) and f−1

1 (x) are the two right inverses of f, one for each
branch:

f−1
0 (x)=1

2 − 1
2 (1 − x)2

f−1
1 (x)=1

2+
1
2 (1 − x)2 (19)

The stationary eigenstate of U, corresponding to the equilibrium
density, is (18):

req(x)=2(1 − x) (20)

The equilibrium density is regular at the marginal fixed point at x=0, so
the cusp map is classified as having weak intermittency.
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Note that U in (18) annihilates any function odd around x=1/2.
A convenient set of seed functions is

e0, s(x)=`2 cos[(2s − 1) px] (21)

where s \ 1. (The factor of `2 is chosen so that the set is orthonormal, i.e.,
Oe0, s | e0, sŒP=dssŒ)

The right inverses of U associated with each branch of the map are

U−1
0 r(x)=˛ r(f(x))

`|2x − 1|
, 0 [ x [ 1/2

0, 1/2 < x [ 1
(22)

U−1
1 r(x)=˛0, 0 [ x < 1/2

r(f(x))

`|2x − 1|
, 1/2 [ x [ 1

(23)

These right inverses can be combined to form other right inverses as in
(16), e.g.

U−1
(01)=

1
2 (U−1

0 +U−1
1 ) (24)

One set of shift states will then be given by

en, s(x)=U−n
(01)e0, s(x) (25)

The action of U−1
(01) on a function creates two compressed copies of the

original function, one on each half-interval.
Using the above shift states, definition (5) for fz, s(x) converges for any

z in the complex unit disk. However, the fz, s(x) are rather irregular. That is
because the en, s rapidly become more oscillatory, with the number of
oscillations increasing exponentially with n. For z ] 0 the fz, s(x) are not
infinitely differentiable. In general, they are relatively smooth for |z| % 0
and they become more irregular as |z| increases towards 1. It is more
natural though to expand a smooth r(x) over smooth basis states. We now
turn to the construction of smooth coherent states.

3.1. Smooth Coherent States of the Cusp Map

As discussed above, we have a great deal of freedom in choosing right
inverses U−1

c for U. By choosing U−1
c =U−1

0 , we can create smooth coherent
states. Once the existence of those states is demonstrated, conclusions
about the spectrum of U will follow.
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The operator U−1
0 corresponding to the branch containing the margi-

nal fixed point produces, when acting successively, relatively weak
compression of functions. It thus produces shift states and coherent states
with less pronounced oscillation.

We start by modifying the seed functions in (21) by tempering them as

g0, s(x)=e0, s(a(x)) a −(x) (26)

where a(x) is an infinitely differentiable, one-to-one function from [0, 1)
onto [0, 1). We require a(x) to satisfy the following three conditions:
a(1 − x)=1 − a(x); all derivatives of a(x) vanish at x=0 and x=1; and
a(0)=0. The first condition is necessary to ensure that g0, s(x) is odd
around x=1/2 and hence that Ug0, s(x)=0. The second condition will
wind up ensuring the smoothness of the coherent states constructed from
the gn, s(x). The third condition ensures a fairly close relationship between
g0, s(x) and e0, s(x), reminiscent of topological conjugacy, and makes the
completeness of the gn, s(x) easier to show.

With an a(x) satisfying the above conditions, all derivatives of g0, s(x)
are 0 at the endpoints of the unit interval. Now using U−1

c =U−1
0 we get the

shift states

gn, s(x)=U−n
0 g0, s(x) (27)

which are infinitely differentiable. In terms of the ci coefficients discussed
in Section 2, we are simply choosing c0=1 and c1=0. The effect of U−n

0 is
to compress g0, s(x) into a small subinterval at the left end of the unit
interval. Since the fixed point at x=0 is marginal, U−1

0 produces only very
slow compression; the gn, s(x) become more compressed as n increases, but
only very slowly. That will turn out to be a key fact. Because g0, s(x) started
out with all its derivatives equal to 0 at x=1, even after the compression it
joins smoothly with the rest of the unit interval, where gn, s(x)=0. Also
note that all the gn, s(x) have all derivatives equal to 0 at x=0, a fact that
will come in useful later.

Several of these gn, s(x) are shown in Fig. 2, where the specific a(x)
chosen is

a(x)=
1
2

tanh 3 tan 5(2x − 1)
p

2
64+

1
2

(28)

(This a(x) may seem rather complicated, but it was chosen as perhaps the
simplest function satisfying the necessary conditions.) It may appear from
the graphs that there is a discontinuity in the first derivative of some of the
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gn,s(x)

Fig. 2. The tempererd shift states g0, 1(x), g1, 1(x), and g2, 1(x). These functions become
compressed more and more towards the left end of the unit interval as n (the first index)
becomes larger.

gn, s(x), but if the graphs were made with sufficient magnification the func-
tions would all look smooth.

Coherent states kz, s(x) can be constructed based on the above shift
states just as before:

kz, s(x)= C
.

n=0
zngn, s(x) (29)

One of them is shown in Fig. 3. In contrast to the coherent states con-
structed in the previous section the kz, s(x) are infinitely differentiable. For
x > 0, that can be seen almost immediately. Only a finite number of terms
in the sum ;.

n=0 zngn, s(x) will have support in a neighborhood of x. As n
gets larger the support of gn, s(x) gets more compressed into the left end of
the unit interval. For large enough n, the support of gn, s(x) will be
compressed to the left of any given x if x > 0. The sum in (29) then
becomes a finite one. It immediately follows that kz, s(x) is infinitely differ-
entiable for x > 0.

The function ks, z(x) is also infinitely differentiable with respect to x at
x=0, though the reason is less obvious. Ultimately it is due to the slow
compression of the gn, s(x) as n increases. That can be seen as follows.
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x

Fig. 3. The smooth coherent state k0.35, 1(x). This function is infinitely differentiable, though
that may not be apparent from looking at the graph.

First note that

gn, s(x)=U−n+1
0 U−1

0 g0, s(x)

=U−n+1
0

5 1

`|1 − 2x|
g0, s(f(x))6

=U−n+2
0

5 1

`|1 − 2x|

1

`|1 − 2f(x)|
g0, s(f2(x))6

=
1

`|1 − 2x|

1

`|1 − 2f(x)|
· · ·

1

`|1 − 2fn − 1(x)|
g0, s(fn(x)) (30)

Replacing x above by f−n
0 (x), we get

gn, s(f−n
0 (x))

=
1

`1 − 2f−n
0 (x)

1

`1 − 2f−n+1
0 (x)

· · ·
1

`1 − 2f−1
0 (x)

1

`|1 − 2x|
g0, s(x)

%
n+1

n
n

n − 1
· · ·

1

`|1 − 2x|
g0, s(x) (31)

where the second step follows because for any x ¥ (0, 1], f−n
0 (x) 3 1/n for

large n. (15) So the above expression increases with at most a power-
law dependence on n; and furthermore, there is some a > 1 such that
gn, s(f−n

0 (x)) grows slower than na for all x.
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One can differentiate (31) an arbitrary number of times with respect
to its argument, and still there will only be a sum of terms that have a
power-law growth with respect to n (and with a bounded exponent).

It is already known that g (m)
n, s (0)=0, where g (m)

n, s (x) is the mth derivative
of gn, s(x). It follows that

sup
x ¥ [0, 1]

|g (m)
n, s (x)|= sup

x ¥ [0, 1]
|g (m)

n, s (f−n
0 (x))| (32)

grows with at most a power-law dependence on n. Then, in the expression

C
.

n=0
zng (m)

n, s (x) (33)

the factor of zn will force exponential decline towards 0 as n Q ..
(Remember that |z| < 1.) The series will be uniformly convergent on [0,1];
and since g (m)

n, s (0)=0,

k (m)
z, s (0)= C

.

m=0
zng (m)

n, s (0)=0 (34)

Clearly, the above argument will not work for non-intermittent maps.
If the fixed point is expanding and hyperbolic, the prefactor associated
with U will not approach 1, as it does in (31); rather, it will approach some
number greater than 1, so the quantity corresponding to gn, s(f0(x)) will
grow exponentially with n.

Hence, imposing a differentiability condition does not reduce the
spectrum to anything less than the unit disk. That is in contrast to maps

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

f4(x)

ξ 0
4

Fig. 4. The fourth iterate of the cusp map. Even for such low n, it is already clear that the
domains of the first and last branches are much longer than any of the others. That reflects
the slow, power-law decrease of t0

n — f−n
0 (1) with respect to n.
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with fully developed chaos. Such maps have an expanding constant q > 1,
and the essential spectral radius of U acting within Ck[0, 1] is less than or
equal to q−k. (16) For example, the dyadic Bernoulli map has coherent states
with |z| < 1. If U is restricted to act within the space of C. functions, the
essential spectral radius shrinks to zero and the only eigenvalues of U that
remain are the discrete values of z=1/2m for m \ 0. (12)

However, as we see below, by imposing the stronger condition of analyti-
city on [0, 1] it is possible to reduce the spectrum of U even for the cusp map.

We could now consider the expansion of a function over the coherent
states kz, s(x). But it is more convenient to consider an the expansion over
the shift states gn, s(x).

The following set of functions are dual shift states:

g̃0
0, r(x)=˛0, 0 [ x < 1/2

2e0, r(a(x)), 1/2 [ x < 1
(35a)

g̃0
m, r(x)=Kmg̃0, r(x), m \ 1 (35b)

where K=U† is the Koopman operator of the cusp map given by

KA(x)=A(f(x)) (36)

and f(x) is the rule (17) for the map. One can see that these are duals to
the shift states defined in (27) as

Og̃0
m, r | gn, sP=OKmg̃0

0, r | U−n
0 g0, sP

=Og̃0
0, r | UmU−n

0 g0, sP

=drsdmn

Since we are interested in the approach towards equilibrium, we will
look at the density dr(x) obtained by subtracting off the equilibrium com-
ponent of r(x):

dr(x)=r(x) − req(x) F
1

0
r(u) du (37)

(Since r(x) is not necessarily a probability density, its integral over the unit
interval is not necessarily one.) The expansion of dr(x) over the gn, s(x) will
have the coefficients

bn, s=Og̃0
n, s | drP

=F
1

0
g̃0

n, s(x) dr(x) dx (38)
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It turns out that for continuous dr(x), the series

C
.

n=0
C
.

s=1
bn, s gn, s(x) (39)

will converge pointwise to dr(x) almost everywhere. More specifically, it
will converge to dr(x) for all x ¥ [0, 1] except x=0 and x=t0

n — f−n
0 (1)

for n \ 0. At those points the series will still converge to a finite value, so
the singularities there are removable. The proof of the convergence is
somewhat tedious, but straightforward. It involves splitting the unit inter-
val into the subintervals [t0

n+1, t0
n] and treating various parts of the above

series as modified Fourier series within those subintervals. The convergence
is non-uniform, and it is slow in the vicinity of x=0 or x=t0

n.
Certain properties of the bn, s (in particular, their large n dependence)

can be seen more clearly if we replace g̃0
n, s(x) in the integral (38) by

g̃n, s(x)=g̃0
n, s(x)+kn, s, where kn, s is a constant chosen so

F
1

0
g̃n, s(x) dx=0, (40)

i.e.,

kn, s=−F
1

0
g̃0

n, s(x). (41)

Since dr(x) has an average value of 0, the coefficients bn, s will be unaf-
fected by the above substitution. If specific values of kn, s are needed, they
will have to be found numerically (as is done in the Appendix). However,
the necessary numerical work is lessened because for n \ 1,

kn, s= − F
1

0
Kng̃0

0, s(x) dx

= − F
1

0
g̃0

0, s(x) Un[1] dx

= − F
1

0
g̃0

0, s(x) req(x) dx

=k1, s (42)

(Note that we are using U[1]=req(x), which is a special feature of the
cusp map.) One of the functions g̃n, s(x) is graphed in Fig. 5.
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Fig. 5. The displaced dual shift state g̃5, 1(x). This function has an average value of 0.

Let us restrict U to act within the space of densities r(x) analytic on
[0, 1]. In that case, f and its induced U will satsify the conditions of
Theorem 1.1 in Ref. 19. One of the conclusions of the theorem is that the
continuous spectrum of U is contained in [0,1], with only isolated eigen-
values elsewhere in the unit disk. We will now present a heuristic argument
to the effect that there should be a branch cut all along [0,1] and no
discrete isolated eigenvalues at all.

The basic idea is to look at the large-n behavior of the bn, s coefficients,
using equation (38) and the characteristics of g̃n, s(x). As Fig. 5 shows,
g̃n, s(x) is a highly oscillatory function whose domain can be divided up into
2n+1 segments. Each segment is a preimage of one of f’s branches. For
high enough n, r(x) within that segment will look like a polynomial.

Since the average value of dr(x) is 0 and the g̃n, s(x) rapidly become
more oscillatory with increasing n, the integral (38) is quite difficult to
evaluate numerically past the first few values of n. The function g̃n, s(x) has
s2n − 1 oscillations, so intuitively one might expect that the bn, s would
decrease exponentially with n. However, that is not true. The average
oscillation in g̃n, s(x) has length 2−n+1/s, but some of the individual oscilla-
tions have a length that decreases with a power-law dependence on n. Most
notably, the first and last segments in the unit interval have a length pro-
portional to 1/n, yielding a component of bn, s proportional to 1/n. Other
nested sequences of segments have lengths proportional to 1/na for various
exponents a.

The contribution to bn, s from the first and last segments, as part of the
integral (38), will then decrease proportionally to 1/n. Within some
segments the rate of decrease will be faster than others, but the
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‘‘slowly-decreasing’’ segment-sequences are densely distributed in the unit
interval, so any analytic r(x) will have the large-n behavior of its bn, s

determined by them. The conclusion is that the bn, s should always have a
slow, power-law decrease for large n. Since an eigenfunction of U would
have the bn, s exponentially decreasing with n, it follows that no analytic
r(x) can be an eigenfunction of U, so U as restricted to the space of ana-
lytic functions has no isolated eigenvalues.

To deal more precisely with the continuous spectrum along [0, 1],
recall that t0

n=f−n
0 (1). From the definition of g̃0

n, s(x) in (38) it immediately
follows that the initial and final ‘‘flat’’ segments, where g̃0

n, s(x)=0 and
where g̃n, s(x)=kn, s, have a length of exactly t0

n+1. Furthermore, it is
known (15) that for large n,

t0
n=

2
n+9

(43)

to leading order in n. So it is clear why the first and last flat segments,
which have a length that approaches 2/n for large n, make the dominant
contribution to the integral in (38) for large n. (Clearly, there is a special
case if r(1)=−r(0), in which case the contribution from the last segment
will cancel that from the first. In that case, higher-order effects come into
play and the bn, s will show a faster though still power-law decay with
respect to n.)

There will also be many nested sequences of smaller flat segments in
the interior of the unit inverval whose length is proportional to 1/n2. Km,
acting on the flat segments at the ends of the unit inverval with length t0

n,
produces 2m − 1 interior flat segments each of which, for fixed n, has length
proportional to (t0

n)2. These will result in a correction to the dominant 1/n
behavior of bn, s.

For intermittent maps in general, bn, s will show an inverse power-law
dependence on n though the dominant term will not necessarily go as 1/n.
The specific case illustrated is typical of the general case: The branch of
fn(x) containing the marginal fixed point will have a length that decreases
with an inverse power-law dependence on n. (15) That is a key difference
from fully developed chaotic maps, for which the corresponding depen-
dence will be an exponential decrease in n.

For the cusp map, based on the fact that bn, s 3 1/n for large n, one
can decompose bn, s into various components. The dominant component is
exactly proportional to 1/n for all n. The other components will decay
faster than 1/n. Correspondingly,

bs(z)= C
.

n=0
z−(n+1)bn, s (44)
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can also be divided into two components. The dominant component will be
proportional to

ln(1 − 1/z)= C
.

n=1

1
n

1
zn (45)

which has a branch cut running between branch points at 1 and 0. Note
that the right-hand side is convergent only for |z| > 1, but it can be analyt-
ically continued in a straightforward way to the expression on the left-hand
side, which is valid even for |z| < 1.

The entire heuristic argument presented above for the cusp map can be
extended to a large class of intermittent maps, because all that is necessary
is for the branch of fn containing the marginal fixed point to have the
length of its domain decrease as 1/n. Many intermittent maps meet that
condition. (15)

For the cusp map specifically, it is possible to say somewhat more. If
there is a contribution to bn, s proportional to 1/nk for real k > 0, then bs(z)
will have a component proportional to

Lik(1/z)= C
.

n=1

1
nk

1
zn (46)

where Lik(z) is the kth polylogarithm function. (20) Lik(1/z) has exactly the
same analytic structure as ln(1 − 1/z) and in fact ln(1 − 1/z)=Li1(1/z).

If there were discrete eigenvalues away from the real axis, then the bn, s

would have to have an oscillatory behavior as a function of n; indeed, it
would have to have an infinite number of oscillations in n. The basic idea is
that such behavior could occur only if r(x) itself had oscillations on all
scales, which is impossible for an analytic function.

It remains possible that, for instance, bn, s may have a component
proportional to 2−n/n or some other mixture of exponential and power-law
dependence on n. In that case bs(z) will still have a branch point at z=0.
As one moves away from z=0 the structure could become more compli-
cated; there might conceivably be a whole set of branch points and poles.
superimposed along each other along the [0, 1]. Fortunately, a great deal
can be found from just main branch cut. In particular it can give informa-
tion about the large t behavior of correlation functions.

3.2. The x−x Autocorrelation for the Cusp Map

Even partial knowledge about bs(z) (or, equivalently, bn, s) can give
useful information about the long-time evolution of densities. The rule is
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that the dominant large n behavior of bn, s determines the dominant large t
evolution of densities.

In particular, one can easily find the leading contribution to the x − x
autocorrelation function:

C(t)= lim
T Q .

1
T

C
T − 1

y=0
xy(xy+t − x̄) (47)

With some additional work, corrections to the leading contribution to C(t)
can also be calculated.

Since the cusp map is ergodic, (18)

C(t)=Ox | U t(xreq)P−Ox | xreqP

=Ox | U t drP (48)

where dr(x)=xreq − 1
3 req(x). The expansion of C(t) in terms of the

smooth coherent states is

C(t)=F
1

0
xU t dr(x) dx

=
1

2pi
C
.

s=1
F

1

0
x G

|z|=1
z tbs(z) kz, s(x) dz dx (49)

We now find the dominant large-n behavior of the bn, s and the corre-
sponding components of the bs(z). The expansion coefficients are from (38):

bn, s=F
1

0
g̃0

n, s(x) dr(x) dx

=F
1

0
g̃n, s(x) dr(x) dx

% F
t

0
n

0
g̃n, s(x) dr(x) dx (50)

We can replace g̃0
n, s(x) by g̃n, s(x) inside the integral since they only differ

by a constant and dr(x) integrated over any constant is zero. The approx-
imation in the last step is valid for n large and is made because dr(1)=0
and the integrand oscillates extremely rapidly away from the endpoints of
the unit interval. Neglected contributions decrease as 1/n2 or faster.

Statistical Dynamics of Power-Law Decay 1199



Carrying on we have

bn, s % dr(0) F
t

0
n

0
[g̃n, s(x)+ks] dx, n large

=dr(0) kst
0
n

% −
2
3

ks
2

n+9
11 −

ln n
n+1

2 (51)

where the higher-order approximation to t0
n is based on the continuous-

time approximation. (15) The approximation in (51) is valid up to ln n/n2.
Call the two components of bn, s above in (51) b (1)

n, s and b (2)
n, s:

b (1)
n, s=−

4
3

ks

n+9
(52)

b (2)
n, s=

4
3

ks

n+9
ln n
n+1

(53)

with corresponding components of bs(z):

b (1)
s (z)= C

.

n=0
b (1)

n, sz
−(n+1) (54)

b (2)
s (z)= C

.

n=0
b (2)

n, sz
−(n+1) (55)

The leading contribution to C(t) is

C (1)(t)=
1

2pi
C
.

s=1
F

1

0
x G

|z|=1
z t C

.

n=0
b (1)

n, sz
−(n+1)kz, s(x) dz dx

% 0.39269
1
t

− 1.6584
ln t
t2 (56)

where details of the calculation are given in the Appendix.
Another correction to C(t) of order ln t/t2 comes from b (2)

n, s, given
in (53). That component yields a correction C (2)(t), defined exactly anal-
ogously to C (1)(t):

C (2)(t)=
1

2pi
C
.

s=1
F

1

0
x G

|z|=1
z t C

.

n=0
b (2)

n, sz
−(n+1)kz, s(x) dz dx

% − 0.39269
ln t
t2 (57)

where details of the calculation are also given in the Appendix.
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C(1)(t)+C(2)(t)

Fig. 6. The upper curve, Cnum(t), is the result of calculating the integral (62) numerically.
The lower curve is C (1)(t)+C(2)(t)=0.39269/t− 2.0511 ln t/t2.

Combining C (1)(t) and C (2)(t), one finds a large-t approximation to
C(t) is

C(t) % 0.39269
1
t

− 2.0511
ln t
t2 (58)

which should be valid up to ln t/t2. Figure 6 shows a comparison of the
above result to values of C(t) that were calculated numerically directly
from the integral expression

C(t)=F
1

0
K t[x] dr(x) dx (59)

Obviously the fit is good for even moderately high values of t. The sort of
approximation in (58) is especially useful because the direct numerical
approach to finding C(t) is quite difficult for t as low as 10 and is extre-
mely difficult to extend past t=100 with much accuracy.

The 1/t term in C(t), which is dominant for large t, yields a frequency
spectral density of

S(w) — C
.

t=0
cos wt C(t) (60)

having a dominant term for small w of

S(w) 3 − ln w (61)
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The result in (58) is an extension of certain results in Ref. 15, in which
the functional form of both the leading contribution to C(t) and the first
correction was found, but a less accurate approximation was used to obtain
their weights.

4. EXTENSION TO OTHER MAPS

The technique described here is applicable to other one-dimensional
maps with marginal fixed points, such as the Farey map (17) and the
Manneville–Pomeau map. (4) For any map f(x) with a marginal fixed point
at x0, the branch of fn(x) containing x0 will have a length that decreases
slower than exponentially as a function of n. That is the key feature allow-
ing the construction of smooth coherent states to work.

Certain modifications may be necessary, for instance to deal with the
Farey map’s singular invariant density. For maps that are even around
their midpoint, dual shift states can be found just as for the cusp map.
For maps that lack clear symmetry, the dual shift states will be harder to
find. If necessary, a set of them can be found numerically at the cost of
introducing another layer of approximation.

It is clear that for any map to which the technique is applicable at all,
imposing a differentiability condition on densities does not reduce the
spectrum of U to anything less than the unit disk. The effect of imposing
the condition of analyticity is less clear, but we conjecture that for a wide
class of intermittent maps the effect is the same as for the cusp map: The
spectrum of U is reduced to real z ¥ [0, 1]. (19)

5. CONCLUSION

The statistical dynamics of a deterministic system is contained entirely
in its Frobenius–Perron operator. For systems with exponential approach
to equilibrium this operator has discrete decay modes that characterize the
details of the approach. Power-law decay may be decomposed into a con-
tinuum of exponentially decaying contributions. We have shown a way to
calculate such exponential decay modes and express the power law decay in
terms of them for a class of systems using a coherent state technique.

This technique has been applied to the well-known cusp map to yield
smooth exponentially decaying eigenstates. The x − x autocorrelation was
then calculated using these states and shown to decay with a dominant power-
law time dependence of t−1 corrected by a term with t−2 ln t behavior.

Our technique serves as an alternative to other analyses of non-expo-
nential time dependence. The idea can be applied to other systems with
non-exponential decay, including those with singular invariant densities.
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APPENDIX

This Appendix presents calculations for the leading-order terms in the
x − x autocorrelation C(t) for large t.

The leading contribution to C(t) is given by

C (1)(t)=
1

2pi
C
.

s=1
F

1

0
x G

|z|=1
z t C

.

n=0
b (1)

n, sz
−(n+1)kz, s(x) dz dx (62)

Now, ks, and hence bn, s, should depend on s as 1/s. The integral of xkz, s(x)
over x should have the same s dependence. So the terms in the sum above
should decrease with s as 1/s2. In fact, numerical work shows that they
decrease even faster than that for small s. So it it is a good approximation
to keep only s=1 in the above sum. (In any case, keeping the full sum in s
would not alter the t dependence of the terms in C(t) to be found below.
Only the weights of the various terms would be altered.)

C (1)(t) %
1

2pi
F

1

0
x G

|z|=1
z t C

.

n=0
b (1)

n, 1z−(n+1)kz, 1(x) dz dx

= −
4
3

k1
1

2pi
F

1

0
x G

|z|=1
z t C

.

n=0

z−(n+1)

n+9
kz, 1(x) dz dx

= −
4
3

k1
1

2pi
F

1

0
x G

|z|=1
z tz8 5− C

8

n=1

z−n

n
+ln(1 − 1/z)6 kz, 1(x) dz dx

(63)

The first term in brackets can be dropped because when multiplied by z8 it
is a polynomial, so its contour integral around a closed path is 0. Next
deform the contour to run right around the branch cut in ln(1 − 1/z)
between z=0 and z=1, so the complex variable z can be replaced by the
real variable y:

C (1)(t)

% −
4
3

k1

2pi
F

1

0
x F

1

0
y t+8 35ln :1 −

1
y
:+pi6−5ln :1 −

1
y
:− pi64 ky, 1(x) dy dx

= −
4
3

k1 F
1

0
x F

1

0
y t+8ky, 1(x) dy dx

= −
4
3

k1 F
1

0
y t+8 C

.

m=0
ym F

1

0
xgm, 1(x) dx dy

= −
4
3

k1 C
.

m=0

wm, 1

m+t+8
(64)
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where

wm, s — F
1

0
xgm, s(x) dx (65)

For values of m that are not too high (up to about 50), it is possible to
calculate wm, 1 numerically fairly easily. For higher values of m it is possible
to obtain a fairly good approximation. First note that all the gm, 1(x) have
the same basic shape as those shown in Fig. 2; they merely become more
and more compressed with increasing m. Using the continuous-time
approximation again, (15) it can be shown that the maximum and minimum
of gm, 1(x) are both at 2/(m+mo) for some mo, with the expression becom-
ing exact in the limit of large m. Numerically it is found that for the
maximum, mo=11.7 and for the minimum mo=8.5. Also note that the
point where the graph of gm, 1(x) crosses the x-axis is exactly t0

m, and the
maximum of the support of gm, 1(x) is t0

m − 1. So:

wm, 1 %
2

m+11.7
F

t
0
m

0
gm, 1(x) dx+

2
m+8.5

F
t

0
m − 1

t
0
m

gm, 1(x) dx

=
2

m+11.7
F

1/2

0
g0, 1(x) dx+

2
m+8.5

F
1

1/2
g0, 1(x) dx

=2 1 1
m+11.7

−
1

m+8.5
2 F

1/2

0
g0, 1(x) dx

% −
4.07437

(m+8.5)(m+11.7)
(66)

where the first step follows from the fact gm, 1(x)=U−m
0 g0, 1(x) and U−1

0

preserves the integral over x of any function it is applied to. The integral of
g0, 1(x) was done numerically.

Call the approximation in (66) w̃m, 1. Now we are in a position to find
the dominant large t behavior of C (1)(t). Look at (64) and note that each
individual term has a large t dependence proportional to 1/t. Since the wm, 1

themselves decrease quickly, to leading order in t we can replace
1/(m+t+8) by 1/t. The result is

C (1)(t) % −
4
3

k1 C
.

m=0
wm, 1

1
t

% 0.39269
1
t

(67)
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where for m up to 30, wm, 1 was evaluated numerically and for higher m the
approximation w̃m, 1 was used, giving an infinite sum that could be
evaluated analytically. k1 was also found numerically.

One can also find a component of C (1)(t) that represents a higher-
order correction to the above. To that order, it is accurate to start out by
replacing all wm, 1 by w̃m, 1 in (64). The infinite sum in that can then be done
analytically. It will yield a term in 1/t (already dealt with), a term in 1/t2

(which could be dealt with, but will be neglected), plus the following term:

−
4
3

k1
263.70 k(t+8)

(1+`5 )(2t − 1)(10t − 37)
% − 1.6584

ln t
t2 , t large (68)

where k(t) is the digamma function k(t)=C −(t)/C(t). (20)

C (2)(t), defined in (57), is yet a further correction.

C (2)(t)=
1

2pi
C
.

s=1
F

1

0
x G

|z|=1
z t C

.

n=0
b (2)

n, sz
−(n+1)kz, s(x) dz dx

%
4
3

k1
1

2pi
F

1

0
x G

|z|=1
z t C

.

n=0

ln n
(n+9)(n+1)

z−(n+1)kz, 1(x) dz dx

%
4
3

k1
1

2pi
F

1

0
x G

|z|=1
z t C

.

n=0

ln n
n2 z−(n+1)kz, 1(x) dz dx (69)

where as before only s=1 is retained and in the second step the approxi-
mation 1/[(n+9)(n+1)] % 1/n2 is used, an approximation with an error
that goes as 1/n3 and hence that can be ignored to the accuracy with which
we are working. The sum above can be done analytically, yielding

C (2)(t) %
4
3

k1
1

2pi
F

1

0
x G

|z|=1
z tl2(1/z) kz, 1(x) dz dx (70)

where

la(z) —
“

“a
Lia(z) (71)

l2(1/z) has a branch cut running between z=0 and z=1. As before,
deform the contour to run around that branch cut:

C (2)(t) %
4
3

k1
1

2pi
F

1

0
x F

1

0
y t 5Im l2

1 1
y − iE

2− Im l2
1 1

y+iE
26 ky, 1(x) dy dx

(72)

Statistical Dynamics of Power-Law Decay 1205



where the real parts of l2(1/z) above and below the cut cancel out. The
imaginary parts above and below are negatives of each other:

C (2)(t) %
4
3

k1
2

2pi
F

1

0
F

1

0
y t Im l2(1/y) ky, 1(x) dy dx (73)

where the branch cut is now regarded as displaced infinitesimally above the
real axis.

C (2)(t) %
4
3

k1
1
pi

C
.

m=0
F

1

0
xgm, 1(x) dx F

1

0
ym+t Im l2(1/y) dy (74)

It can be shown analytically from the properties of l2(z) that the integral
over y approaches p ln t/t2 for large t, so

C (2)(t) %
4
3

k1
1
pi

C
.

m=0
wm, 1p

ln t
t2 (75)

Once the sum over m is dealt with as before, by finding wm, 1 numerically
for m up to 60 and using the approximation w̃m, 1 for higher m, we obtain

C (2)(t) % − 0.39209
ln t
t2 (76)
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